
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

ECI Runtime Systems Workshop Summary

Ron Brightwell
R&D Manager, Scalable System Software Department

Purpose and Goals of the Workshop

 Review state-of-the-art in runtime systems (RTS)

 Identify challenges being addressed by current RTS R&D

 Identify research questions that need to be resolved

 Devise metrics, measures, benchmarks, and means for testing
and evaluation for RTS prototypes

 Discuss R&D roadmap that will result in one or more high-
quality RTS prototypes

 http://www.orau.gov/runtimesys2015/

ASCAC Meeting - July 27, 2015

Workshop Details

 March 11-13, 2015

 Rockville Hilton, Rockville, MD

 45 domain experts in HPC runtime systems

 Content
 Invited talks and breakout sessions

 Topics

 The architecture for future RTS software

 RTS design

 Outstanding research questions

 Roadmap for the future

ASCAC Meeting - July 27, 2015

Focus Area 1: System Architecture

 Execution model

 Governing principles of the strategy of computation

 Asynchrony

 Semantics and control strategy in the presence of asynchrony

 System fragmentation

 Scope of the RTS, from system- to node-level

 Relationship between operating system and RTS

 Responsibilities and interfaces

 Relationship between programming models and RTS

 Basic requirements for RTS

 Compile-time information, guidance, and constraints

 Information that compilers can provide to the RTS

 Evaluation

 Metrics for testing and evaluating a RTS

ASCAC Meeting - July 27, 2015

Focus Area 2: RTS Design

 Memory models, namespace, address space

 How the RTS manages memory resources

 Introspection interfaces, policy, and control

 How the RTS can use dynamic adaptive techniques

 Contribution to tools

 Role of RTS in correctness analysis

 Parallelism forms, granularity, and synchronization

 Role of RTS in managing parallelism

 Contribution and responsibility to reliability

 Specific capabilities of the RTS for resilience

 Contribution and responsibility to power/energy

 Role of RTS in minimizing energy costs

 Evaluation

 How to test and evaluate RTS design

ASCAC Meeting - July 27, 2015

Workshop Builds on RTS Summit Activity

 RTS Summit meeting, April 9, 2014

 11 attendees from X-Stack projects

 Day-long meeting to brainstorm about
requirements for an exascale RTS

 Goal was to develop high-level
requirements, roles, and responsibilities
for RTS

 Provide some context for generating
roadmap for future investments in RTS

 Services an RTS needs to provide

 Interfaces between RTS and

 Node- and system-level hardware
abstraction layers

 Operating system

 Programming interface

 Mapping these interfaces to existing RTS

 45-page draft report

ASCAC Meeting - July 27, 2015

RTS R&D in Several ASCR Projects

 X-Stack program has
played key role in
supporting RTS R&D for
extreme-scale

 X-Stack renewal enables
engagement across
projects in RTS

 Prototypes

 Interfaces

 Evaluation strategies

ASCAC Meeting - July 27, 2015

Qthreads

Conductor

RTS in NNSA/ASC Projects

ASCAC Meeting - July 27, 2015

HPX STAPL

Charm++

Argobots

Realm

UINTAH

Many Other Run Time Systems

 Nanos/StarSS/OmpSS (BSC)

 StarPU/ForestGOMP (Inria)

 SWARM (ETI)

 MassiveThreads (U. Tokyo)

 Cilk/Cilk Plus (MIT/Intel)

 Grappa (UW/PNNL)

 HAS (AMD)

Definition of RTS (incomplete)

 Strong desire to understand responsibilities of the RTS

 Characteristics
 Non-priveleged

 Runs in application space

 Ephemeral

 Doesn’t live beyond the application

 Can manage hardware directly

 As long as isolation and protection mechanisms are provided

 Interfaces to the node-level OS

 May interface to the system OS and the enclave OS

 Definition may be platform specific

ASCAC Meeting - July 27, 2015

Architecture for Exascale RTS

 Execution model

 Struggle with nomenclature

 Depends on what runtime service being provided

 Runtime services should be able to be bypassed

 Asychrony

 Performance variability – how to do resource management?

 Some programming models embrace it

 Everything needs to be lightweight – scheduling, synchronization, etc.

 Relationship between RTS and OS

 Services used by application versus across applications

 OS should still get out of the way but enable the RTS

 Relationship to PM

 What gets exposed and what gets hidden (transparency)

 Connection to services like data management, security, performance monitoring

 Flow of information between app and RTS

 Evaluation

 What are the metrics?

 RTS portability

ASCAC Meeting - July 27, 2015

RTS Architecture (cont’d)

 Blurry lines between RTS above (PM) and below (OS)
 Dynamic compilation, interpreted languages, etc. make this problem

worse

 Lack of clear taxonomy is hindering effective integration

 Need requirements from the top
 Loss of semantic information all the way down the stack

 QoS requirements, allocation of resources should be exposed
as hints from the application programmer to drive policy
decisions

 Managing shared resources

 Dealing with elasticity

 Resilience is a cross-cutting problem

ASCAC Meeting - July 27, 2015

RTS Design

 Memory System

 Translation

 Need to support static, semi-static, and dynamic use of memory

 How to differentiate between memory and storage

 How memory is virtualized

 Introspection

 Need a well-defined set of policies and abstractions for reasoning about the behavior of
the system

 Need to be able to observe all aspects of the hardware

 Different granularities of information to be observed

 Cost of introspection

 Reliability

 Vulnerability of the RTS to faults

 Complexity of interactions exacerbates this problem

 Energy/Power Management
 Responsibility of job scheduler, job-level RTS, node-level RTS

ASCAC Meeting - July 27, 2015

RTS Design (cont’d)
 Scheduling and Resource Management

 Priorities

 Load balancing

 Latency hiding

 Systems will be malleable and elastic

 Resolving conflicts between different policies

 Tool Infrastructure
 Toolchain needs to be co-designed with RTS

 Attribution of performance bottlenecks

 Interoperability of different programming systems and RTSs

 Application developers need to understand detailed decisions by RTS

 Evaluation
 Adoption is a good metric

 Scalability, flexibility, portability, completeness, ease of use

ASCAC Meeting - July 27, 2015

Articulate the RTS Ecosystem

 Develop an ecosystem model for RTS components

 Determine which RTS services are stand-alone and which are
embedded into larger components
 RTS support for language-specific features

 Identify interfaces that are ready for a standardization
process

 Process for transitioning RTS software from research to
production

ASCAC Meeting - July 27, 2015

Metrics
 Don’t want performance metrics alone

 Need relative metrics to evaluate research progress

 Time to solution

 Time to solution with failures

 Time to solution with system variability

 Time to solution under power/energy constraints

 Runtime overhead
 CPU overhead

 Memory overhead

 Portability of RTS

 Many concerns about
 Evaluating the RTS (or PM)

 Evaluating the implementation of the RTS (or PM)

 Evaluating the ability of the hardware to support the RTS (or PM)

ASCAC Meeting - July 27, 2015

Dynamic Control

 What does each RTS layer or component control?

 How do layers coordinate toward goal-oriented
optimizations?

 Need to identify resources that are managed

 Need to figure out how to coordinate and optimize across
layers

 Backplane for communication between layers

 Define data and mechanisms for introspection

ASCAC Meeting - July 27, 2015

Resilience

 RTS needs to support resilience
 Must interface to other software layers

 RTS also needs to be resilient

 RTS-based strategies
 Task replication and migration

 Fine-grain checkpointing

 Critical challenge for extreme-scale

ASCAC Meeting - July 27, 2015

Adoption

 New RTS layers must be done with application developers and
system software developers

 DOE needs to partner with application teams

 Need to disseminate RTS R&D impact
 Track open research questions

 Share peer-reviewed success with broader community

 Co-design should include system software, applications, and
platforms

ASCAC Meeting - July 27, 2015

Research Questions

 What are the forms of schedulable tasks managed by the RTS? (threads,
processes, codelets, fibers, etc.)

 What is the assumed memory structure? What are the performance
trade-offs and opportunities of dynamic allocation and redistribution?

 What are first-class objects that can be named and what is the scope of
that name (locality)?

 Interfaces and flow of information involving RTS

 Control model for RTS introspection

 Managing overhead of hiding latency while exploiting parallelism

 What is the role of the RTS in reliability?

 Role of the RTS in managing power/energy

 Role of RTS in application interoperability

 What architectural support does the RTS need?

 How can performance modeling and evaluation be leveraged?

ASCAC Meeting - July 27, 2015

Research Questions (cont’d)
 RTS

 User-level constructs that exist within a single executable

 Part of the programming model implementation

 Can the RTS support multiple PM/Es?

 Can different RTSs use shared resources?

 How does data move between runtimes?

 Convergence
 No standard practice

 Need to establish a process for incorporating research results into an
initial production approach

 View the RTS as a set of services and establish minimal set of services

 Need an initial detailed survey and inventory of service/interface
points

 Allow for convergence on a few RTSs and establish attributes for
interoperability

ASCAC Meeting - July 27, 2015

Research Questions (concl’d)

 Industry integration
 How to incorporate research efforts to industry

 RTS characteristics
 Are dynamic RTSs needed for exascale performance?

 How much parallelism should be exposed to the RTS?

 How should application communicate information about locality and
load balance to the RTS?

 How should the RTS interact with other parts of the system?

ASCAC Meeting - July 27, 2015

Key Takeaways
 Need to define a process to work through several issues

 Workshop only scratched the surface

 Need crisp definitions for basic terms

 Need to agree on set of services to organize discussions

 Tension between monolithic approach and interoperable components

 Everyone wants control of the layers below them (including apps)

 Need bi-directional flow of information between layers

 Better agreement on what is “OS” and “RTS”

 Interoperability between different RTS

 Are dynamic RTS capable or necessary for exascale?

 Emerging awareness of ties between RTS and SSIO

 RTS itself will need to be resilient

 Introspection is a key aspect, but what can/should be queried?

 What is the path to production use? How to engage vendors?

 Need metrics, even to help with concepts (e.g., overdecomposition, dynamic)

 Will overheads outweigh benefits at scale?

 Need to catalog research questions that are being answered

ASCAC Meeting - July 27, 2015

Draft Report

 Currently 29 pages

ASCAC Meeting - July 27, 2015

